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The problem of the bending of an anisotropic plate bounded on the outside by an elliptic contour and 

on the inside by a circular contour with two adjoining cuts of the same length is considered in the 

classical formulation. IO view of the fact that the region occupied by the section of the plate is doubly 

connected, the required construction of the function which realizes a conformal transformation (using 

known schemes) meets with considerable difficulties. Using Faber polynomials, it is found to be 
possible to limit the functions which map the exterior of each of the boundary contours independently, 

and the exterior of the internal contour is mapped appro~mateiy (by retaining a finite number of terms 

in the expansion). The problem is reduced to solving four systems of infinite linear algebraic equations. 

A numerical example for an orthotropic plate is considered. 

CONSIDER the bending of an anisotropic plate of thickness h, the middle plane of which is a doubly 

connected region bounded on the outside by an ellipse L, with semiaxes a and b, and on the inside by a 
circle Z,, of radius r with two rectilinear cuts along the abscissa axis (Fig. 1). The origin of coordinates is 
at the centre of the circle Lr. The coordinates of the end points of the cut are denoted by fe We will 

assume that at each point of the plate there is a plane of elastic symmetry parallel to the middle plane. 

As in the case of an isotropic plate, the solution of the problem is based on Kirchhoff’s hypothesis. The 
edge of the plate can be rigidly clamped, supported by a hinge and free from external forces, or loaded 

with bending moments and intersecting forces. 
The exterior of the outer contour & (the ellipse) is mapped onto the exterior of the unit circle by 

means of the function 

A2=a+9, @t~=~ 
2 @2+b2 

(1) 

The function inverse to (1) has the form 

52 =x(z)=(z/A~)~~‘)(A~ 1~)~” I (2) 

Here and everywhere henceforth the station over n is from n = 0 to n = 00. 
The quantities a:’ are defined by well-known formulae [l-S]. The exterior of the internal contour Lt 

(the circle with two cuts) is mapped onto the exterior of the unit circle by the function [3-S] 
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4 I_ 4? 

Fxo .1. 

The function & = f(r), inverse to the expansion (3), is 

The fundamental equatian of the technical theory of bending of thin anisotropic plates has the form 

P-101 

Here 4 is a uniformly distributed load and D,, (i, j = 1, 2,6) are the stiffnesses of the plate, which can be 
expressed in terms of the elastic constants a,,. 

We will represent the general solution of Eq. (5) in the form of the sum of its particular and general 

solutions of the corresponding homogeneous equation, defined by the roots of the characteristic 
equation. It was shown in [2, 101, that the roots of this equation for actual anisotropic materials are 

complex or purely imagiuary. In general we have 

~j =Uj"iaj (j=1,2), P3 =Pl* 114 =F2 (6) 

The complex parameters pj (j = I, 2) are called the parameters of the bending of plates, The general 

real integral of Eq. (5) can be written in the form 

Here re,(z,) and ro,(z.J are analytic functions of the generaliied complex variables z, (i= 1, 2). Here 
the generalized (or complicated) complex variables z, are obtained from the ordinary complex variable z 

by the following affine transformations 

Zj=Xj+iYj=X+~jY* %j=X+Ujy* yj=pjY (8) 

The variable z = x +$ relates to the region S (the initial region of the plate), while the variables z, and 
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z, refer to the regions S, and S,, obtained from S by the affine transformation (8). 
Hence, the bending of an anisotropic plate (in the final analysis the bending moments, the intersecting 

forces and the stresses) can be expressed in terms of two analytical functions w,(z,) (j = 1, 2). It should be 
noted that the same pattern is also observed in the case of the plane problem for an anisotropic solid. 

Using the affine transformations (8) the external contour & can be converted and also becomes an 

ellipse with axes 

The function which maps the exterior &, (j = 1, 2) (i.e. the exterior of the transformed ellipses), onto the 

external unit circle has the form [7-lo] 

The internal contour L, is also converted into an ellipse with two cuts along the abscissa axis and 

semiaxes 

@)=~(I+u~), bjj) =pjr 

The function which maps the exteriors of the contours L.zi (i.e. the exteriors of the ellipses with two 

cuts) into the exterior of the unit circle, can be represented in the form [3-51 

The functions w,(z,) depend on the form of the clamping of the edge of the plate, and also on the form 

of the forces acting on it. 
In particular, if the edge of the plate is loaded with bending moments m (S) and intersecting forces p(S), 

the boundary conditions on the contours L, for determining the functions ai will have the form [6,7] 

2 R&w L;’ Hz1 I+ P~PL;’ w(z2 )I= p1 (9 

2R4wh I+ qMz2 )I = (92 W 

Here 

cP(zt)=do%(zt)ldzt, w(z~)=do~(z~)ldz2 

s 
cpl(S)=; [fi~-~Y-fw+qx+c()* 

(P2(S)=-i [fi~+~-fdyl+Cly+C02 
0 

01) 

If bending moments of intensity m (S) are distributed uniformly along the external contour L_ we have 

cp1w= -my, 92(S)=-m, fi =f2 =O (12) 

On the internal contour (i.e. on the circle with two cuts) in this case we will have m = 0, f = 0, and 
fi=fi=o. 

If the internal contour L., is loaded with a constant bending moment of intensity m , while the external 
contour is free from external forces, we have 

on ll.2: m=O. f=O. fl=f2=0 
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S 
on 4: Q1(S)=j mdy+c~x=my+c,x 

0 

Q*(S)=-f ma!r+c,y=-??m+c~y (33) 
0 

If normal forces of intensity p act on the external contour of the plate which bend it, Eqs (11) become 

Qr(S)=Bldpz~ fdY-IN242 -i fb 

( 1 0 
(14) 

cPz(~)=Pz~mJ2 -cL141(P1) 

f =a PW~, Pw=P, f =P 

The boundary conditions (10) can sometimes be more conveniently represented in the form [7] 

V(tl)+Kl2’P(fi)+K22iTGJ)=fij +Ctalx+%Y) 

~(~2)+K~~+~~~~=fZj +C(a3x+a4Y) 

fkz = b&l PkQz - p,qzQk I* k = 1-2; I?u = P42 = ru,, 

(15) 

where the functions Q,(S) and Q,(S) are defined by (11). 
If one of the contours of the plate is rigidly clamped, the following conditions must be satisfied on this 

contour (instead of the requirement that the bending of the plate should be zero) 

aco/dx= 0, wdy= 0 

Taking expressions (7) and (11) into account in these conditions, we can reduce the boundary 

conditions for determining the functions ~(2,) and w(q) on the clamped edge to the form [7,9] 

If the internal contour is rigidly clamped, then in (15) and (16) 

(17) 

If the external contour is rigidly clamped, we have 

Plj =Kj2, p~l=Kn, p~3=&2~ P31=&1, P32=K21r P4j=Kj+l 1 08) 

If the plates are bent under the action of a normal load of intensity e, uniformly distributed over the 

upper surfaces, we have 

a#) =4x4 /(~~~~) (19) 
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We than have [6,7] 

The coefficients (complex constants) N, and N, are found from the conditions 

i (Mj-q)=O, i ($ljMj-Fj~)=" 

j=l j-0 

(20) 

(21) 

Hence, the solution of the problem of the bending of anisotropic plates (one edge of which is rigidly 

clamped) reduces to determining two functions cp(zJ and w(q) which satisfy boundary conditions (10) 
and (16). 

The functions cp(z,) and w(q), which are regular in regions S, and S,, respectively, will be sought in 

the form [l-S] 

The quantities a?) and hi’) are found for each specific contour [3-51. 
On the internal contours we have (taking the mapping function (9) into account in (22)) 

(22) 

(23) 

Here we have also taken into account that one end and the same point on the unit circle corresponds to 

points z, of the contours L,,. 
The constant C, (ll), (13) and (21) is found from the condition for the bending w of the middle plane 

of the plate to be unique. For an infinite region C, = 0. 
On the external transformed contours &, we have 

cPlUt)=Z%kii”+D,(4 lAp)lk on & 1 

I(f2)=~D,(A:2’/r2)k+~Ck(f2/A:l’)k on &2 

(24) 

(25) 

Substituting the mapping functions into (24) and (25), we obtain after some reduction 

The values of all the quantities in (23)-(26) are found in the same way as in [3-51. 
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Fro. 2. 

Taking (23) and (26) into account in succession in the boundary conditions (IO) we obtain four systems 
of equations (changing ta the variable 7). 

Equating the coefficients of the same powers of the variable 5 we obtain the following four systems of 

infinite linear algebraic equations for d~te~~~g the coefficient of the expansion of the functions rp(z,) 

and urC%> 

Hence, the solution of the problem reduces to solving four systems (27)-(30) of infinite equations in 

the unknown coefficients a,, B,, d, and c,. 
Taking the first few terms of these equations we find the coefficients a,, j3,, d, and c,, We can further 

determine the functions cp(,zI) and w(q), and then, using (7), we can fiid the deflection of the plate w. 
We could substitute (23) and (26) into the boundary conditions (15) and (16) and obtain solutions of 

the problem of the bending of a plate with a single rigidly clamped contour. 
After d~te~ing the complex potentials q(z) and w,(z), the stress intensity factors (SF) near the 

vertex of the cut for the bending of an anisotropic plate can be calculated from one of the following 

formulae [6] 

(321 

Here r is a point on the unit circIe which corresponds to the cuspidal point on the contour of the defect 

(i.e. the cut). 
To illustrate the solution obtained we wih consider some mtmerical examples. 
1. The bending of an elliptic plate with an elliptic cavity by moments of intensity m(S) = M uniformly 

distributed over the outer contour. The inner contour is assumed to be rigidly clamped (Fig. 2). 
If we take e = r in (27)-(JO), then in the transformed cross-sections S/, the inner contour will be an 

ellipse with semiaxes qj and br,. From these systems of equations we retained the first five and 

determined the coefficients of the expansion of the functions g.(z,) and v,(zC), i.e. 01,~ &, c* and 4. 
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Points, zla, 

T-1 

Ai, Y 

PlyWoOd SVAM Plywood SVAM 

0.2 0.8950 23268 0.004 0.3412 
05 I,2120 I,@20 0.8021 1.022 
1.0 1.004 1.04 1,024 0.9866 
O.li 0.651 0.1304 2,064 1.004 
O.Ui 1.721 05124 1.1434 1.22 
0.S 1.464 0.7311 1.012 1.022 

TABLE 2 

Fractions Version --TW Graphite-epoxy 

f3=0 1 * 0 1 B=Xn 

&E1 0.46 0.22 0.46 0.22 
= K, 6 

a b 
0.67 0.44 0.64 0.38 

Qy &b 
2.0 0.54 2,O 0.44 

K, x t 3.64 1,21 3.81 1.10 

Further, from (22) we determined the regular functions cp,(zl) and v.(z;), and then from (7), taking 

(11) into account, we calculated the deflection of the plate w at characteristic points. As in [7, lo] we 
determined the bending moments and the intersecting forces at characteristic points of the section. 

We took plywood as the material of the plate, for which [7, lo] 

fll = 1.04 c l$% pz = -1.04 + 155i 

and also when the plate is made of SVAM for which [7, lo] 

p, = 0.442 + 4899i, & = -0.442 + OS!% 

The values obtained for the bending moments are shown in Table 1. 
The maximum bending in a plywood plate turned out to be approximately six times greater than in a 

plate of SVAM. 
Without appreciable error (G 4%) we can assume a plate with parameters a, /a, = 10 to be infinite, 

since the results of bending, the bending moments and the inte~ect~g forces are ahnost identical with the 
results for au infinite plate, rigidly clamped along the edge of an elliptic opening [6]. 

2. The bending of an elliptic plate with a central rectilinear cut acted upon by moments of intensity 

m(s) = m uniformly distributed over the external contour. 
From systems (27) and (30) we retained the first five equations (for m, = 1 and l+ = 0) and obtained the 

coefficients a,, &, C~ and & 
A numerical ~l~ulation was carried out for the ratios 

(a) a,la, =0.2, (b) a,/~+, =0.5. 

At the end points of the cut, using (32) we determined the stress intensity factors for different materials 
in the case of pure bending of an orthotropic plate (as in the case of an isotropic plate, K, = 0). 

The results are shown in Table 2, where r, is a coordinate in a local polar system, with origin at the tip 

of the cracks (G&, and 1 = e- r is the length of the cracks). 
It should be noted that for a ratio a, la, = 0.2 the values of the stress intensity factors are identical with 
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the results obtained in [6] for an infinite plate with a rectilinear cut along the absicca axis. 
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